4+1/x=1/x^2

Simple and best practice solution for 4+1/x=1/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4+1/x=1/x^2 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/x+4 = 1/(x^2) // - 1/(x^2)

1/x-(1/(x^2))+4 = 0

1/x-x^-2+4 = 0

x^-1-x^-2+4 = 0

t_1 = x^-1

1*t_1^1-1*t_1^2+4 = 0

t_1-t_1^2+4 = 0

DELTA = 1^2-(-1*4*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)-1)/(-1*2) or t_1 = (-17^(1/2)-1)/(-1*2)

t_1 = (17^(1/2)-1)/(-2) or t_1 = (17^(1/2)+1)/2

t_1 = (17^(1/2)-1)/(-2)

x^-1-((17^(1/2)-1)/(-2)) = 0

1*x^-1 = (17^(1/2)-1)/(-2) // : 1

x^-1 = (17^(1/2)-1)/(-2)

-1 < 0

1/(x^1) = (17^(1/2)-1)/(-2) // * x^1

1 = ((17^(1/2)-1)/(-2))*x^1 // : (17^(1/2)-1)/(-2)

-2*(17^(1/2)-1)^-1 = x^1

x = -2*(17^(1/2)-1)^-1

t_1 = (17^(1/2)+1)/2

x^-1-((17^(1/2)+1)/2) = 0

1*x^-1 = (17^(1/2)+1)/2 // : 1

x^-1 = (17^(1/2)+1)/2

-1 < 0

1/(x^1) = (17^(1/2)+1)/2 // * x^1

1 = ((17^(1/2)+1)/2)*x^1 // : (17^(1/2)+1)/2

2*(17^(1/2)+1)^-1 = x^1

x = 2*(17^(1/2)+1)^-1

x in { -2*(17^(1/2)-1)^-1, 2*(17^(1/2)+1)^-1 }

See similar equations:

| e+38=46 | | 5=4+d | | 5x-11=17-2x | | 27=c+9 | | 3(3z+2)=6z+7+2z+6 | | -3x/2-1/3=8 | | 3(k+5)-7k+8+2= | | 7/3+x=3x+11/3 | | 25+b=10 | | 3x+-6=x-2 | | 12+b=15 | | k^2+3k-17=0 | | z+6=2 | | 14+16(t+5)=-18 | | z^2-12z=-11 | | x+21=87-x | | a+7=18 | | 6+-2x+2=2-x | | 3w+6=4e | | 7b-3=-b+5 | | 3(9-2d)+2d=18 | | 2n^2-3n-4=6 | | 7(y-1)-4(1+2y)=y-11 | | 6(3v-7)=(4v+8) | | 3(9-2d)=18 | | 4t=-28 | | 6m^3+5n+6m^2+5n=0 | | 6y-7=27-y | | x^2+4x+4=-28 | | 3n+5=-7 | | 8-3x=x+8x | | 2x+-1=3x+1 |

Equations solver categories